Banner Default Image

Data

​Big data primarily refers to data sets that are too large or complex to be dealt with by traditional data-processing application software. Data with many entries (rows) offer greater statistical power, while data with higher complexity (more attributes or columns) may lead to a higher false discovery rate.[2] Though used sometimes loosely partly because of a lack of formal definition, the interpretation that seems to best describe big data is the one associated with large body of information that we could not comprehend when used only in smaller amounts.[3]

Big data analysis challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating, information privacy, and data source. Big data was originally associated with three key concepts: volume, variety, and velocity.[4] The analysis of big data presents challenges in sampling, and thus previously allowing for only observations and sampling. Thus a fourth concept, veracity, refers to the quality or insightfulness of the data. Without sufficient investment in expertise for big data veracity, then the volume and variety of data can produce costs and risks that exceed an organization's capacity to create and capture value from big data.[5]

Current usage of the term big data tends to refer to the use of predictive analytics, user behavior analytics, or certain other advanced data analytics methods that extract value from big data, and seldom to a particular size of data set. "There is little doubt that the quantities of data now available are indeed large, but that's not the most relevant characteristic of this new data ecosystem."[6] Analysis of data sets can find new correlations to "spot business trends, prevent diseases, combat crime and so on".[7] Scientists, business executives, medical practitioners, advertising and governments alike regularly meet difficulties with large data-sets in areas including Internet searches, fintech, healthcare analytics, geographic information systems, urban informatics, and business informatics. Scientists encounter limitations in e-Science work, including meteorology, genomics,[8] connectomics, complex physics simulations, biology, and environmental research.[9]

The size and number of available data sets have grown rapidly as data is collected by devices such as mobile devices, cheap and numerous information-sensing Internet of things devices, aerial (remote sensing), software logs, cameras, microphones, radio-frequency identification (RFID) readers and wireless sensor networks.[10][11] The world's technological per-capita capacity to store information has roughly doubled every 40 months since the 1980s;[12] as of 2012, every day 2.5 exabytes (2.5×260 bytes) of data are generated.[13] Based on an IDC report prediction, the global data volume was predicted to grow exponentially from 4.4 zettabytes to 44 zettabytes between 2013 and 2020. By 2025, IDC predicts there will be 163 zettabytes of data.[14] According to IDC, global spending on big data and business analytics (BDA) solutions is estimated to reach $215.7 billion in 2021.[15][16] While Statista report, the global big data market is forecasted to grow to $103 billion by 2027.[17] In 2011 McKinsey & Company reported, if US healthcare were to use big data creatively and effectively to drive efficiency and quality, the sector could create more than $300 billion in value every year.[18] In the developed economies of Europe, government administrators could save more than €100 billion ($149 billion) in operational efficiency improvements alone by using big data.[18] And users of services enabled by personal-location data could capture $600 billion in consumer surplus.[18] One question for large enterprises is determining who should own big-data initiatives that affect the entire organization.[19]

Relational database management systems and desktop statistical software packages used to visualize data often have difficulty processing and analyzing big data. The processing and analysis of big data may require "massively parallel software running on tens, hundreds, or even thousands of servers".[20] What qualifies as "big data" varies depending on the capabilities of those analyzing it and their tools. Furthermore, expanding capabilities make big data a moving target. "For some organizations, facing hundreds of gigabytes of data for the first time may trigger a need to reconsider data management options. For others, it may take tens or hundreds of terabytes before data size becomes a significant consideration."[21]

​Birmingham (/ˈbɜːrmɪŋəm/ (About this soundlisten)[3][4] BUR-ming-əm) is a city and metropolitan borough in the West Midlands, England. It is the second-largest city, urban area and metropolitan area in England and the United Kingdom,[b] with roughly 1.1 million inhabitants within the city area, 2.9 million inhabitants within the urban area and 4.3 million inhabitants within the metropolitan area and lies within the most populated English district.[5][6][7][8][9][10][10][11] Birmingham is commonly referred to as the second city of the United Kingdom.[12][13]

Located in the West Midlands county and region in England, approximately 100 miles (160 km) from Central London, Birmingham, as one of the United Kingdom's major cities, is considered to be the social, cultural, financial, and commercial centre of both the East and West Midlands. Distinctively, Birmingham only has small rivers flowing through it, mainly the River Tame and its tributaries River Rea and River Cole – one of the closest main rivers is the Severn, approximately 20 miles (32 km) west of the city centre.

A market town of Warwickshire in the medieval period, Birmingham grew in the 18th-century Midlands Enlightenment and subsequent Industrial Revolution, which saw advances in science, technology, and economic development, producing a series of innovations that laid many of the foundations of modern industrial society.[14] By 1791, it was being hailed as "the first manufacturing town in the world".[15] Birmingham's distinctive economic profile, with thousands of small workshops practising a wide variety of specialised and highly skilled trades, encouraged exceptional levels of creativity and innovation and provided an economic base for prosperity that was to last into the final quarter of the 20th century. The Watt steam engine was invented in Birmingham.[16]

The resulting high level of social mobility also fostered a culture of political radicalism which, under leaders from Thomas Attwood to Joseph Chamberlain, was to give it a political influence unparalleled in Britain outside London, and a pivotal role in the development of British democracy.[17] From the summer of 1940 to the spring of 1943, Birmingham was bombed heavily by the German Luftwaffe in what is known as the Birmingham Blitz. The damage done to the city's infrastructure, in addition to a deliberate policy of demolition and new building by planners, led to extensive urban regeneration in subsequent decades.

Birmingham's economy is now dominated by the service sector.[18] The city is a major international commercial centre and an important transport, retail, events and conference hub. Its metropolitan economy is the second largest in the United Kingdom with a GDP of $121.1bn (2014),[2] and its six universities make it the largest centre of higher education in the country outside London.[19] Birmingham's major cultural institutions – the City of Birmingham Symphony Orchestra, the Birmingham Royal Ballet, the Birmingham Repertory Theatre, the Library of Birmingham and the Barber Institute of Fine Arts – enjoy international reputations,[20] and the city has vibrant and influential grassroots art, music, literary and culinary scenes.[21] The city will host the 2022 Commonwealth Games.[22] Birmingham is the fourth-most visited city in the UK by foreign visitors.[23]